当前位置:找作文 >作文大全 > 正文

大学物理实验报告答案

2022-04-01 12:27:53 18

大学物理实验报告答案图片

大学物理实验答案篇一:大学物理实验报告答案大全

大学物理实验报告答案大全(实验数据及思考题答案全包括)

伏安法测电阻

实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。

(3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。

实验方法原理

根据欧姆定律,

R ??,如测得 U 和 I 则可计算出 R。值得注意的是,本实验待测电阻有两只,

一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。(转 载 于:ax?? 1.5%,得到???; U 1?? 0.15V,???U 2?? 0.075V

(2) 由???I ? I max?? 1.5%,得到???I1?? 0.075mA,???I 2?? 0.75mA;

2 2

)?? ( ,求得 uR1 ? 9?? 101??,uR 2?? 1?;

(3) 再由 uR ?3V I

(4) 结果表示 R1 ? (2.92?? 0.09)??10 3??,R2?? (44?? 1)??

光栅衍射

实验目的

(1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。

(3) 观测汞灯在可见光范围内几条光谱线的波长 实验方法原理

若以单色平行光垂直照射在光栅面上,按照光栅衍射理论,衍射光谱中明条纹的位置由下式决定: =dsin ψk =±kλ

(a + b) sin ψk

如果人射光不是单色,则由上式可以看出,光的波长不同,其衍射角也各不相同,于是复色光将被分解,而在中央 k =0、 ψ =0 处,各色光仍重叠在一起,形成中央明条纹。在中央明条纹两侧对称地分布着 k=1,2,3,…级光谱,各级光谱 线都按波长大小的顺序依次排列成一组彩色谱线,这样就把复色光分解为单色光。如果已知光栅常数,用分光计测出 k 级光谱中某一明条纹的衍射角ψ,即可算出该明条纹所对应的单色光的波长λ。 实验步骤

(1) 调整分光计的工作状态,使其满足测量条件。

(2) 利用光栅衍射测量汞灯在可见光范围内几条谱线的波长。

①由于衍射光谱在中央明条纹两侧对称地分布,为了提高测量的准确度,测量第k级光谱时,应测出+k级和-k 级光谱线的位置,两位置的差值之半即为实验时k取1 。

②为了减少分光计刻度盘的偏心误差,测量每条光谱线时,刻度盘上的两个游标都要读数,然后取其平均值(角 游标的读数方法与游标卡尺的读数方法基本一致)。

③为了使十字丝对准光谱线,可以使用望远镜微调螺钉12来对准。

④测量时,可将望远镜置最右端,从-l 级到+1 级依次测量,以免漏测数据。

数据处理

(1) 与公认值比较

λ0为公认值。

(2) 计算出紫色谱线波长的不确定度

? 0

其中

u(λ) =

(a?? b) | cos? | u(? ) 1 ? cos15.092???????

=0.467nm ; U =2×u(λ) =0.9 nm 600 60?? 180

1.

最后结果为: λ=(433.9±0.9) nm

当用钠光(波长λ=589.0nm)垂直入射到 1mm 内有 500 条刻痕的平面透射光栅上时,试问最多能看到第几级光谱?并 请说明理由。 答:由(a+b)sinφ=kλ

∵φ最大为 90o

2.

-6

得 k={(a+b)/λ}sinφ

所以 sinφ=1

又∵a+b=1/500mm=2*10m,

6 9

λ=589.0nm=589.0*10m

-9

∴k=2*10/589.0*10=3.4 最多只能看到三级光谱。

当狭缝太宽、太窄时将会出现什么现象?为什么? 答:狭缝太宽,则分辨本领将下降,如两条黄色光谱线分不开。 狭缝太窄,透光太少,光线太弱,视场太暗不利于测量。

3. 为什么采用左右两个游标读数?左右游标在安装位置上有何要求? 答:采用左右游标读数是为了消除偏心差,安装时左右应差 180o。

光电效应

实验目的

(1) 观察光电效现象,测定光电管的伏安特性曲线和光照度与光电流关系曲线;测定截止电压,并通过现象了解其物 理意义。

(2) 练习电路的连接方法及仪器的使用; 学习用图像总结物理律。 实验方法原理

(1) 光子打到阴极上,若电子获得的能量大于逸出功时则会逸出,在电场力的作用下向阳极运动而形成正向 电流。在没达到饱和前,光电流与电压成线性关系,接近饱和时呈非线性关系,饱和后电流不再增加。

2 2

(2)电光源发光后,其照度随距光源的距离的平方成(r)反比即光电管得到的光子数与r成反比,因此打出的电子

22 -2

数也与r成反比,形成的饱和光电流也与r成反比,即I∝r。

(3) 若给光电管接反向电压 u反,在 eU反< mvmax / 2=eUS时(vmax为具有最大速度的电子的速度) 仍会有电子移动

到阳极而形成光电流,当继续增大电压 U反,由于电场力做负功使电子减速,当使其到达阳极前速度刚好为零时 U反=US, 此时所观察到的光电流为零,由此可测得此光电管在当前光源下的截止电压 US。 实验步骤

(1) 按讲义中的电路原理图连接好实物电路图; (2) 测光电管的伏安特性曲线:

①先使正向电压加至30伏以上,同时使光电流达最大(不超量程), ②将电压从0开始按要求依次加大做好记录; (3) 测照度与光电流的关系:

①先使光电管距光源20cm处,适当选择光源亮度使光电流达最大(不超量程); ②逐渐远离光源按要求做好记录; 实验步骤

(4) 测光电管的截止电压: ①将双向开关换向;

②使光电管距光源20cm处,将电压调至“0”,适当选择光源亮度使光电流达最大(不超量程),记录此时的光 电流I0,然后加反向电压使光电流刚好为“0”,记下电压值US;

③使光电管远离光源(光源亮度不变)重复上述步骤作好记录。 数据处理 (1) 伏安特性曲线

照度与光电

伏安特性曲线

流曲线

(3) 零电压下的光电流及截止电压与照度的关系

1. 临界截止电压与照度有什么关系?从实验中所得的结论是否同理论一致?如何解释光的波粒二象性?

电压与照度无关,实验结果与理论相符。

答:临界截止

光具有干涉、衍射的特性,说明光具有拨动性。从光电效应现象上分析,光又具有粒子性,由爱因斯坦方程来描

述:hν=(1/2)mvmax+A。

2. 可否由 Us′ν曲线求出阴极材料的逸出功?答:可以。由爱因斯坦方程 hυ=e|us|+hυo可求出斜率Δus/Δυ=h/e 和普朗克常数,还可以求出截距(h/e)υo,再由截距求出光电管阴极材料的红限

υo,从而求出逸出功 A=hυo。

2

光的干涉—牛顿环

实验目的

(1) 观察等厚干涉现象及其特点。

(2) 学会用干涉法测量透镜的曲率半径与微小厚度。 实验方法原理

利用透明薄膜(空气层)上下表面对人射光的依次反射,人射光的振幅将分成振幅不同且有一定光程差的两部分, 这是一种获得相干光的重要途径。由于两束反射光在相遇时的光程差取决于产生反射光的薄膜厚度,同一条干涉条纹所 对应的薄膜厚度相同,这就是等厚干涉。将一块曲率半径 R 较大的平凸透镜的凸面置于光学平板玻璃上,在透镜的凸 面和平板玻璃的上表面间就形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。当平行的单色光垂直入射时, 入射光将在此薄膜上下两表面依次反射,产生具有一定光程差的两束相干光。因此形成以接触点为中心的一系列明暗交 替的同心圆环——牛顿环。透镜的曲率半径为:R?4(m??? n)实验步骤

(1) 转动读数显微镜的测微鼓轮,熟悉其读数方法;调整目镜,使十字叉丝清晰,并使其水平线与主尺平行(判断的 方法是:转动读数显微镜的测微鼓轮,观察目镜中的十字叉丝竖线与牛顿环相切的切点连线是否始终与移动方向平行)。

(2) 为了避免测微鼓轮的网程(空转)误差,整个测量过程中,轮只能向一个方向旋转。尽量使叉丝的竖线对准暗 在鼓应 干涉条纹中央时才读数。

(3) 应尽量使叉丝的竖线对准暗干涉条纹中央时才读数。 (4) 测量时,隔一个暗环记录一次数据。

(5) 由于计算 R 时只需要知道环数差 m-n,因此以哪一个环作为第一环可以任选,但对任一暗环其直径必须是对 应的两切点坐标之差。 数据处理

4(m??? n)??

c

c=5.25mm;U

uc ( R)?? R???= 2× uc ( R) = 11 mm

R R?? (?? U ) =(875±11)mm

1. 透射光牛顿环是如何形成的?如何观察?画出光路示意图。答:光由牛顿环装置下方射入,在 空气层上下两表面对入射光的依次反射,形成干涉条纹,由上向下观察。

2. 在牛顿环实验中,假如平玻璃板上有微小凸起,则凸起处空气薄膜厚度减小,导致等厚干涉条纹 发生畸变。试问这时的牛顿环(暗)将局部内凹还是局部外凸?为什么? 答:将局部外凸,因为同一条纹对应的薄膜厚度相同。

3. 用白光照射时能否看到牛顿环和劈尖干涉条纹?此时的条纹有何特征?

答:用白光照射能看到干涉条纹,特征是:彩色的条纹,但条纹数有限。

R

2

=?8.9?10??8=0.6%

?? 20.635????

双棱镜干涉

实验目的

(1) 观察双棱镜干涉现象,测量钠光的波长。

(2) 学习和巩固光路的同轴调整。 实验方法原理

双棱镜干涉实验与双缝实验、双面镜实验等一样,都为光的波动学说的建立起过决定性作用,同时也是测量光波 波长的一种简单的实验方法。双棱镜干涉是光的分波阵面干涉现象,由 S 发出的单色光经双棱镜折射后分成两列,相当 于从两个虚光源 S1和 S2射出的两束相干光。这两束光在重叠区域内产生干涉,在该区域内放置的测微目镜中可以观察

d d

到干涉条纹。根据光的干涉理论能够得出相邻两明(暗)条纹间的距离为???x ?,即可有???????x其中 d 为两

D D

个虚光源的距离,用共轭法来测,即 d ?d 2 ;D 为虚光源到接收屏之间的距离,在该实验中我们测的是狭缝到测 微 目 镜 的 距 离 ; ??x 很 小 , 由 测 微 目 镜 测 量 。

实验步骤

(1) 仪器调节 ①粗调

将缝的位置放好,调至坚直,根据缝的`位置来调节其他元件的左右和高低位置,使各元件中心大致等高。 ②细调

根据透镜成像规律用共轭法进行调节。使得狭缝到测微目镜的距离大于透镜的四倍焦距,这样通过移动透镜能够在 测微目镜处找到两次成像。首先将双棱镜拿掉,此时狭缝为物,将放大像缩小像中心调至等高,然后使测微目镜能够接 收到两次成像,最后放入双棱镜,调双棱镜的左右位置,使得两虚光源成像亮度相同,则细调完成。各元件中心基本达 到同轴。

(2) 观察调节干涉条纹

调出清晰的干涉条纹。视场不可太亮,缝不可太宽,同时双棱镜棱脊与狭缝应严格平行。取下透镜,为方便调节可 先将测微目镜移至近处,待调出清晰的干涉条纹后再将测微目镜移到满足大于透镜四倍焦距的位置。

(3) 随着 D 的增加观察干涉条纹的变化规律。 (4) 测量

①测量条纹间距???x

②用共轭法测量两虚光源 S1和 S2的距离 d

大学物理实验答案篇二:厦门大学大学物理实验理论作业参考答案

参考答案

第二题:

<1>(2.9979246?0.0000010)?108 米/秒 或 (2.997925?0.000001)?108米/秒

<3>(1.7?0.5)?10?3 卡/克度

第三题:

<1>8.5?0.2

<3>0.0027?0.0008

第五题:

<1>3.01

<3>2?103

<5>3.0

几何合成:

UN?(?f?f?f22?Ux)2?(?Uy)2?(?Uz)2?x?Uy?(2Uz)2

?x?y?z?f?f?f?Ux??Uy??Uz?x?y?2Uz ?x?y?z

<2>算术合成:

算术合成:

(A2?L2)?UA?2ALUL?f?f ?Uf??UA??UL? 2?A?L4A

几何合成:

?f?f(A2?L2)?UA22ALUL2(UAA2?UAL2)2?4(ALUL)2

22Uf?(?UA)?(?UL)?()?()?22?A?L4A4A4A2

33???V0aVt?VtV0t??(1?at)2,??(1?at)2,<4>?t2?a2

算术合成:

UV0??f?f?Ua??Ut?a?t

33??aVttV?|?(1?at)2Ua|?|?t(1?at)2Ut| 22

3?Vt?|?(1?at)2[|aUa|?|tUt|]|2

几何合成:

UV0?(?f?f?Ua)2?(?Ut)2

?a?t

33??aVttV?[?(1?at)2Ua]2?[?t(1?at)2Ut]2 22

Vt?|(1?at)?3|(aUa)2?(tUt)2

2

第十一题: 110解:平均值:d??di?3.34 10i?1(mm) 平均值标准误差:???(di?110i?3.34)2?0.009 10?9(mm)

因为测量次数为10次,在置信概率为68.3%时,t因子t0.68?1.06,则A类不确定度值为:UA?t0.68??0.01 (mm) 游标卡尺的误差为均匀分布,

则B类不确定度值为:UB?

因此合成不确定度为:U?仪?0.023?0.012 (mm) 22?A?UB?0.02 (mm) 结果不确定度表示:d?d?U?3.34?0.02 (mm) 相对不确定度为:E?

68.3% U0.02?100%??100%?0.6%,其置信概率为3.34d

大学物理实验答案篇三:大学物理实验数据处理作业答案

五、用分度值为0.01mm的一级千分尺测得钢球的直径为15.561mm、15.562mm、15.560mm、15.563mm、15.564mm、15.560mm,千分尺的零点读数为0.011mm,试求钢球体积的测量结果。 解:数据列表

1 2 3 4 5 6 平均值 标准差 d'(mm) 15.561 15.562 15.560 15.563 15.564 15.560 15.562 0.00163 d(mm) 15.550 15.551 15.549 15.552 15.553 15.549 15.551 0.00163

肖维涅系数C6=1.73,C6?Sd?1.73?0.00163?0.0028

d’数据有效范围:下限:15.562?0.0028?15.559

上限:15.562?0.0028?15.565数据全部有效

?15.551mmua(d)?Sd/6?0.0007mm

ub(d)?0.004/=0.0023u(d)?最终结果

0.00072?0.00232=0.0024mm

1

??d3?1969.0mm3

6?V1

u(V)?u(d)??d2u(d)?0.9mm3

?d2

V??u(V)??1969.0?0.9?mm3u(V)

E(V)??100%?0.046%

(P?0.683)

4?2L

六、利用单摆测重力加速度g,当摆角很小时有g? ,式中L为摆长,T为周期,它们的测量

T2

结果用不确定度分别表示为:L=(97.69±0.02)cm(P=0.683);T=(1.9842±0.0002)s(P=0.683)试求重力加速度g的测量结果。 解:

g?4?2

L

=979.58m/s2 2T

lng?ln(4?2)?lnL?2lnT,

dgdLdT??2 gLT

E(g)=

0.0220.00022U(g)u(L)2u(T)2

=0.02873% ]?4[]?0.0002873?[]?4[]=[

97.691.9842gLT

U(g)?0.28m/s2

最终结果:

g??979.6?0.3?m/s

2

(P?0.683)

二、用单摆测重力加速度实验中,改变摆长L,分别测量摆动50个周期的时间tn,实验数据如下表。试用图解法求重力加速度g。

解:(1) 作图

由理论公式:T?2?

L

g,T和L之间不存在简单的线形关系,采用曲线改直方案,

g4?

2T。 2

对上式两边平方,并作整理得:L?

在直角坐标纸上建立坐标,横轴代表T2,纵轴代表长度L,作T2-L曲线。

(2) 图解法求重力加速度

在直线的两端(测量点内侧)任取两点A(52.0,2.12)、B(99.0,4.00),用符号“o”标出。 斜率:

g4?2

?

L2?L199.0?52.0

??25(cm/s2) 22

T2?T14.00?2.12

所求的重力加速度:g=987cm/s2

三、水的表面张力在不同温度时的数值如下表所示。设F=aT-b,其中T为热力学温度,试用最小二乘法求常数a和b及相关系数γ。

解:令x=T,y=F,则y=-b+ax 由公式:a?

?xy2?x2

?

?TF2?T2

?

313?69.459?21675.05

??0.164(N/m.K) 2

313?98369

(N/m) b?a??a???0.16371?313?69.459?-120.701

??

xy?[x2?2][y2?2]

?

TF?[T2?2][F2?2]

?-0.9996(或-1.000)

标签:学科教育教育物理

标签列表
热门文章