数学小知识之数学的由来介绍
2022-04-01 12:26:04 9
数学[英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。下面是小编整理的数学小知识之数学的由来介绍,一起来看看吧。
人们在生活中经常会遇到各种相反意义的量。比如,在记账时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。可见正负数是生产实践中产生的。
据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。
我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。
刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。
我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。
用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。”
这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。
用不同颜色的数表示正负数的习惯,一直保留到现在。现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。
负数是正数的相反数。在实际生活中,我们经常用正数和负数来表示意义相反的两个量。夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。
在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数。这种引入方法可以在某种特殊的问题情景中给出负数的直观理解。而在古代数学中,负数常常是在代数方程的求解过程中产生的。对古代巴比伦的.代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。然而,在中国的传统数学中,已较早形成负数和相关的运算法则。
除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。他在算法启蒙中,负数在国外得到认识和被承认,较之中国要晚得多。在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。
与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性。16、17世纪欧洲大多数数学家不承认负数是数。帕斯卡认为从0减去4是纯粹的胡说。帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理。英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年)。他对此解释到:因为a>0时,英国著名代数学家德?摩根 在1831年仍认为负数是虚构的。他用以下的例子说明这一点:“父亲56岁,其子29岁。问何时父亲年龄将是儿子的二倍?”他列方程56+x=2(29+x),并解得x=-2。他称此解是荒唐的。当然,欧洲18世纪排斥负数的人已经不多了。随着19世纪整数理论基础的建立,负数在逻辑上的合理性才我国在《九章算术》《方程》章中就引入了负数(negative number)的概念和正负数加减法的运算法则。在某些问题中,以卖出的数目为正(因是收入),买入的数目为负(因是付款);余钱为正,不足钱为负。在关于粮谷计算中,则以加进去的为正,减掉的为负。“正”、“负”这一对术语从这时起一直沿用到现在。
在《方程》章中,引入的正负数加法法则称为“正负术”。正负数的乘除法则出现得比较晚,在1299 年朱世杰编写的《算学启蒙》中,《明正负术》一项讲了正负数加减法法则,一共八条,比《九章算术》更加明确。在“明乘除段”中有“同名相乘为正,异名相乘为负”之句,也就是(±a)×(±b)=+ab,(±a)×( b)=-ab,这样的正负数乘法法则,是我国最早的记载。宋末李冶还创用在算筹上加斜划表示负数,负数概念的引入是中国古代数学最杰出的创造之一。
印度人最早提出负数的是628年左右的婆罗摩笈多(约598-665)。他提出了负数的运算法则,并用小点或小圈记在数字上表示负数。在欧洲初步认识提出负数概念,最早要算意大利数学家斐波那契(1170-1250)。他在解决一个盈利问题时说∶我将证明这个问题不可能有解,除非承认这个人可以负债。15世纪的舒开(1445?-1510?)和16世纪的史提非(1553)虽然他们都发现了负数,但又都把负数说成是荒谬的数,卡当(1545)给出了方程的负根,但他把它说成是“假数”。韦达知道负数的存在,但他完全不要负数。笛卡儿部分地接受了负数,他把方程的负根叫假根,因它比“无”更小。
哈雷奥特(1560-1621)偶然地把负数单独地写在方程的一边,并用“-”表示它们,但他并不接受负数。邦别利(1526-1572)给出了负数的明确定义。史提文在方程里用了正、负系数,并接受了负根。基拉德(1595-1629)把负数与正数等量齐观、并用减号“-”表示负数。总之在16、17世纪,欧洲人虽然接触了负数,但对负数的接受的进展是缓慢的。
- 上一篇:数学小报图片漂亮
- 下一篇:简单又漂亮的数学手抄报图片
- 标签列表
-
- 作文
- 其他类
- 体裁作文
- 节日作文
- 高中作文
- 小学生作文
- 语文
- 美文
- 教育
- 句子
- 阅读
- 古诗文
- 文学赏析
- 大全
- 问答
- 读后感
- 写作指导
- 外语
- 外语课堂
- 名著阅读
- 字数作文
- 祝福语
- 词汇
- 爱好
- 唐代诗人
- 作文素材
- 学历类
- 瑞文网
- 交际礼仪文书
- 歌词
- 高考
- 散文
- 励志
- 观后感
- 古籍
- 计算机类
- 职场
- 造句
- 教案
- 外语类
- 资格证类
- 古诗
- 语录名言
- 阅读答案
- 人物作文
- 书画
- 学科教育
- 句子大全
- 日常行政公文
- 总结
- 课文大全
- 规章制度
- 知识
- 宋代诗人
- 板报大全
- 成语大全
- 近义词
- 诗词
- 工作总结
- 初一作文
- 手抄报
- 诗
- 试题
- 优美句子
- 节日庆典
- 职业技能
- 诗句
- 好词好句
- 诗歌
- 春节
- 现代作家
- 关于什么的作文
- 事务文书
- 名言语录
- 求学指南
- 高校排名
- 素材
- 自然作文
- 教学设计
- 书信函范文
- 词语
- 学生范文
- 大学
- 对联
- 读后感大全
- 演讲稿
- 琴棋
- 初二作文
- 初三作文
- 文艺体育
- 乐谱
- 赏析
- 学习资料
- 语录