当前位置:找作文 >作文大全 > 正文

对数函数的定义是什么

2022-04-01 12:15:35 10

对数函数的定义是什么图片

一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。下面是小编给大家整理的对数函数的定义简介,希望能帮到大家!

对数函数的定义

一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。

对数函数是6类基本初等函数之一。其中对数的定义:

如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

“log”是拉丁文logarithm(对数)的.缩写,读作:[英][lɡ][美][lɡ,lɑɡ]。

函数性质

定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1

和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}

值域:实数集R,显然对数函数无界;

定点:对数函数的函数图像恒过定点(1,0);

单调性:a>1时,在定义域上为单调增函数;

0<a<1时,在定义域上为单调减函数;

奇偶性:非奇非偶函数

周期性:不是周期函数

对称性:无

最值:无

零点:x=1

注意:负数和0没有对数。

两句经典话:底真同对数正,底真异对数负。解释如下:

也就是说:若y=logab (其中a>0,a≠1,b>0)

当0<a<1,0<b<1时,y=logab>0;

当a>1,b>1时,y=logab>0;

当0<a<1,b="">1时,y=logab<0;

当a>1,0<b<1时,y=logab<0。

对数函数的实际应用

在实数域中,真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。

对数函数的底数为什么要大于0且不为1?【在一个普通对数式里 a<0,或=1 的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)】

通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。另外,在科学计数中常使用以无理数e=2.71828···为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把logeN 记为In N。根据对数的定义,可以得到对数与指数间的关系:

当a>0,a≠1时,aX=N X=logaN。(N>0)

由指数函数与对数函数的这个关系,可以得到关于对数的如下结论:

在实数范围内,负数和零没有对数;

log以a为底1的对数为0(a为常数) 恒过点(1,0)。

有理和无理指数

如果 是正整数,表示等于 的 个因子的加减:

但是,如果是 不等于1的正实数,这个定义可以扩展到在一个域中的任何实数 (参见幂)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数 ,有一个对数函数和一个指数函数,它们互为反函数。

对数可以简化乘法运算为加法,除法为减法,幂运算为乘法,根运算为除法。所以,在发明电子计算机之前,对数对进行冗长的数值运算是很有用的,它们广泛的用于天文、工程、航海和测绘等领域中。它们有重要的数学性质而在今天仍在广泛使用中。

复对数

复对数计算公式

复数的自然对数,实部等于复数的模的自然对数,虚部等于复数的辐角。

标签:学科教育教育数学

标签列表
热门文章