当前位置:找作文 >作文大全 > 正文

高中数学复数知识点总结

2022-04-01 12:12:51 24

高中数学复数知识点总结图片

总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,因此好好准备一份总结吧。你想知道总结怎么写吗?下面是小编为大家整理的高中数学复数知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

高中数学复数知识点总结1

复数定义

我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。

复数表达式

虚数是与任何事物没有联系的,是绝对的,所以符合的表达式为:

a=a+ia为实部,i为虚部

复数运算法则

加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;

减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;

乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;

除法法则:(a+bi)/(c+di)=[(ac+bd)/(c+d)]+[(bc-ad)/(c+d)]i.

例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最终结果还是0,也就在数字中没有复数的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一个函数。

复数与几何

①几何形式

复数z=a+bi被复平面上的点z(a,b)唯一确定。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。

②向量形式

复数z=a+bi用一个以原点O(0,0)为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数四则运算得到恰当的几何解释。

③三角形式

复数z=a+bi化为三角形式

高中数学复数知识点总结2

方差定义

方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的'方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。

方差性质

1.设C为常数,则D(C)=0(常数无波动);

2.D(CX)=C2D(X)(常数平方提取);

3.若X、Y相互独立,则前面两项恰为D(X)和D(Y),第三项展开后为

当X、Y相互独立时,,故第三项为零。

独立前提的逐项求和,可推广到有限项。

方差的应用

计算下列一组数据的极差、方差及标准差(精确到0.01).

50,55,96,98,65,100,70,90,85,100.

答:极差为100-50=50.

高中数学复数知识点总结3

复数的概念:

形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。

复数的表示:

复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。

复数的几何意义:

(1)复平面、实轴、虚轴:

点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数

(2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即

这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。

复数的模:

复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=

虚数单位i:

(1)它的平方等于-1,即i2=-1;

(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立

(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。

(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

复数模的性质:

复数与实数、虚数、纯虚数及0的关系:

对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

两个复数相等的定义:

如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di

a=c,b=d。特殊地,a,b∈R时,a+bi=0

a=0,b=0.

复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。

复数相等特别提醒:

一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。

解复数相等问题的方法步骤:

(1)把给的复数化成复数的标准形式;

(2)根据复数相等的充要条件解之。

数学加法心算技巧

1、分裂再凑整数加法;

比如;8+5=13,先把“5”分裂成“2”和“3”;那么就是8+2+3=10;

2、比如;77+8=85,先把“8”分裂成“3”和“5”;那么就是77+3+5=85;

3、变整数再减去

比如,26+18=44,把“18”变成“20-2”,那么就是26+20-2=44;

4、比如;387+983=1370,把“983”变成“1000-17”,那么就是387+1000-17=1370;

5、错位数相加

比如,个位加十位得数是个位的;

51+15=66;这样算:5+1得6;1+5得6;两6合拼

72+27=99;这样算:7+2得9;2+7得9;两9合拼

63+36=99;这样算:6+3得9;3+6得9;两9合拼

52+25=77;这样算:5+2得7;2+5得7;两7合拼

6、比如,个位加十位得数是十位的;

78+87=165;这样算:7+8=15,再把“15”两个数字“1”和“5”相加得6,把这个“6”放在“15”的中间,得出“165”;

67+76=143,这样算:6+7=13,再把“13”两个数字“1”和“3”相加得4,把这个“4”放在“13”的中间,得出“143”;

高中数学复数知识点总结4

定义

数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围。形如z=a+bi的数称为复数(complex number),其中规定i为虚数单位,且i^2=i*i=-1(a,b是任意实数)我们将复数z=a+bi中的实数a称为复数z的实部(real part)记作Rez=a 实数b称为复数z的虚部(imaginary part)记作 Imz=b. 已知:当b=0时,z=a,这时复数成为实数 当a=0且b0时,z=bi,我们就将其称为纯虚数。

运算法则

加法法则

复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。

即 (a+bi)+(c+di)=(a+c)+(b+d)i.

乘法法则

复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i^2 = 1,把实部与虚部分别合并。两个复数的积仍然是一个复数。

即(a+bi)(c+di)=(ac-bd)+(bc+ad)i.

除法法则

复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,yR)叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算,

即 (a+bi)/(c+di)

=[(a+bi)(c-di)]/[(c+di)(c-di)]

=[(ac+bd)+(bc-ad)i]/(c^2+d^2).

开方法则

若z^n=r(cos+isin),则

z=nr[cos(2k)/n+isin(2k)/n](k=0,1,2,3n-1)

标签:教育高中高考高考备考

标签列表
热门文章