数学因式分解练习题
2022-04-01 12:09:03 14
导读:不知道大家因式分解学习的怎么样呢?下面是应届毕业生小编为了考考大家而整理出来的数学因式分解练习题,希望可以帮助到大家!
一、填空题:
2.(a-3)(3-2a)=_______(3-a)(3-2a);
12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;
15.当m=______时,x2+2(m-3)x+25是完全平方式.
二、选择题:
1.下列各式的因式分解结果中,正确的是
A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1)
C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c)
2.多项式m(n-2)-m2(2-n)分解因式等于
A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1)
3.在下列等式中,属于因式分解的是
A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1
C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-8
4.下列各式中,能用平方差公式分解因式的是
A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b2
5.若9x2+mxy+16y2是一个完全平方式,那么m的值是
A.-12 B.±24 C.12 D.±12
6.把多项式an+4-an+1分解得
A.an(a4-a) B.an-1(a3-1) C.an+1(a-1)(a2-a+1) D.an+1(a-1)(a2+a+1)
7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为
A.8 B.7 C.10 D.12
8.已知x2+y2+2x-6y+10=0,那么x,y的值分别为
A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-3
9.把(m2+3m)4-8(m2+3m)2+16分解因式得
A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)
C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)2
10.把x2-7x-60分解因式,得
A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x-5)(x+12)
11.把3x2-2xy-8y2分解因式,得
A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y)
12.把a2+8ab-33b2分解因式,得
A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b)
13.把x4-3x2+2分解因式,得
A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1)
C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1)
14.多项式x2-ax-bx+ab可分解因式为
A.-(x+a)(x+b) B.(x-a)(x+b) C.(x-a)(x-b) D.(x+a)(x+b)
15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是
A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12
C.x2-4x-12或x2+4x-12 D.以上都可以
16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有
A.1个 B.2个 C.3个 D.4个
17.把9-x2+12xy-36y2分解因式为
A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3)
C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3)
18.下列因式分解错误的是
A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3)
C.x2+3xy-2x-6y=(x+3y)(x-2) D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)
19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的'关系为
A.互为倒数或互为负倒数 B.互为相反数
C.相等的数 D.任意有理数
20.对x4+4进行因式分解,所得的正确结论是
A.不能分解因式 B.有因式x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8)
21.把a4+2a2b2+b4-a2b2分解因式为
A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab)
C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)2
22.-(3x-1)(x+2y)是下列哪个多项式的分解结果
A.3x2+6xy-x-2y B.3x2-6xy+x-2y
C.x+2y+3x2+6xy D.x+2y-3x2-6xy 23.64a8-b2因式分解为
A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b)
C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为
A.(5x-y)2 B.(5x+y)2 C.(3x-2y)(3x+2y) D.(5x-2y)2
25.(2y-3x)2-2(3x-2y)+1因式分解为
A.(3x-2y-1)2 B.(3x+2y+1)2
C.(3x-2y+1)2 D.(2y-3x-1)2
26.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为
A.(3a-b)2 B.(3b+a)2 C.(3b-a)2 D.(3a+b)2
27.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为因式分解练习题。
A.c(a+b)2 B.c(a-b)2 C.c2(a+b)2 D.c2(a-b)
28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为
A.0 B.1 C.-1 D.4
29.分解因式3a2x-4b2y-3b2x+4a2y,正确的是
A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y)
C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y)
30.分解因式2a2+4ab+2b2-8c2,正确的是
A.2(a+b-2c) B.2(a+b+c)(a+b-c)
C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c)
三、因式分解:
1.m2(p-q)-p+q;
2.a(ab+bc+ac)-abc;
3.x4-2y4-2x3y+xy3;
4.abc(a2+b2+c2)-a3bc+2ab2c2;
5.a2(b-c)+b2(c-a)+c2(a-b);
6.(x2-2x)2+2x(x-2)+1;
7.(x-y)2+12(y-x)z+36z2;
8.x2-4ax+8ab-4b2;
9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);
10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;
11.(x+1)2-9(x-1)2; 12.4a2b2-(a2+b2-c2)2;
13.ab2-ac2+4ac-4a;
14.x3n+y3n;、
15.(x+y)3+125;
16.(3m-2n)3+(3m+2n)3;
17.x6(x2-y2)+y6(y2-x2); 18.8(x+y)3+1;
19.(a+b+c)3-a3-b3-c3;
20.x2+4xy+3y2;
21.x2+18x-144;
22.x4+2x2-8;
23.-m4+18m2-17;
24.x5-2x3-8x;
25.x8+19x5-216x2;
26.(x2-7x)2+10(x2-7x)-24; 27.5+7(a+1)-6(a+1)2;
28.(x2+x)(x2+x-1)-2;
- 上一篇:因式分解优秀教案
- 下一篇:《分解质因数》优秀教案
- 标签列表
-
- 作文
- 其他类
- 体裁作文
- 节日作文
- 高中作文
- 小学生作文
- 语文
- 美文
- 教育
- 句子
- 阅读
- 古诗文
- 文学赏析
- 大全
- 问答
- 读后感
- 写作指导
- 外语
- 外语课堂
- 名著阅读
- 字数作文
- 祝福语
- 词汇
- 爱好
- 唐代诗人
- 作文素材
- 学历类
- 瑞文网
- 交际礼仪文书
- 歌词
- 高考
- 散文
- 励志
- 观后感
- 古籍
- 计算机类
- 职场
- 造句
- 教案
- 外语类
- 资格证类
- 古诗
- 语录名言
- 阅读答案
- 人物作文
- 书画
- 学科教育
- 句子大全
- 日常行政公文
- 总结
- 课文大全
- 规章制度
- 知识
- 宋代诗人
- 板报大全
- 成语大全
- 近义词
- 诗词
- 工作总结
- 初一作文
- 手抄报
- 诗
- 试题
- 优美句子
- 节日庆典
- 职业技能
- 诗句
- 好词好句
- 诗歌
- 春节
- 现代作家
- 关于什么的作文
- 事务文书
- 名言语录
- 求学指南
- 高校排名
- 素材
- 自然作文
- 教学设计
- 书信函范文
- 词语
- 学生范文
- 大学
- 对联
- 读后感大全
- 演讲稿
- 琴棋
- 初二作文
- 初三作文
- 文艺体育
- 乐谱
- 赏析
- 学习资料
- 语录