当前位置:找作文 >作文大全 > 正文

圆柱与圆锥知识点总结

2022-03-30 17:56:04 11

圆柱与圆锥知识点总结图片

漫长的学习生涯中,大家都没少背知识点吧?知识点也可以通俗的理解为重要的内容。掌握知识点有助于大家更好的学习。下面是小编收集整理的圆柱与圆锥知识点总结,希望能够帮助到大家。

一.圆柱

1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。

2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。

3、圆柱的侧面展开图:

a 沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。

b. 不沿着高展开,展开图形是平行四边形或不规则图形。

C.无论如何展开都得不到梯形.

侧面积=底面周长×高 S侧=Ch=πd×h =2πr×h

4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。

圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2 = 2πr×h + 2×πr2

(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)

圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。

圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

长方体的体积=底面积×高

圆柱体积=底面积×高

V柱=S h =πr2 h

h =V柱÷S=V柱÷(πr2)

S=V柱÷h

5、.圆柱的切割:

a.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2

b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh

考试常见题型:

a 已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长

b已知圆柱的底面周长和高,求圆柱的.侧面积,表面积,体积,底面积

c已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积

d已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积

e已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积

以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。

常见的圆柱解决问题:

①、压路机压过路面面积、烟囱、教学楼里的支撑柱、通风管、出水管(求侧面积);

②、压路机压过路面长度(求底面周长);

②、水桶铁皮(求侧面积和一个底面积);

④鱼缸、厨师帽(求侧面积和一个底面积);

V钢管=(πR2﹣πr2)×h

二、圆锥

1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。

2、圆锥各部分的名称:

圆锥只有一个底面,底面是个圆,圆锥的侧面是个曲面,把圆锥的侧面展开得到一个扇形。

从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)

3、圆锥的体积:

圆锥的体积等于与它等底等高的圆柱体积的三分之一

V锥= ×底面积×高= S h= πr2 h

圆锥的高=圆锥体积×3÷底面积 h =3 V锥÷S = 3 V锥÷(πr2)

圆锥的底面积=圆锥体积×3÷高 S= 3 V锥÷h

4.圆锥的切割:

a.横切:切面是圆

b.竖切(过顶点和直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,表面积增加两个等腰三角形的面积,即S增=2Rh

考试常见题型:

a 已知圆锥的底面积和高,求体积

b已知圆锥的底面周长和高,求圆锥的体积,底面积

c已知圆锥的底面周长和体积,求圆锥的高,底面积

以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算。

三、圆柱和圆锥的关系

1.圆柱的特征:一个侧面、两个底面、无数条高且侧面沿高展开图是长形。

2.圆锥的特征:一个侧面、一个底面、一个顶点、一条高且侧面展开图是扇形。

圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

圆柱与圆锥等底等体积,圆锥的高是圆柱高的3倍。

圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

圆柱体积比等底等高圆锥体积多2倍。

圆锥体积比等底等高圆柱体积少。

(1)等底等高:V锥:V柱=1:3

(2)等底等体积:h锥:h柱=3:1

(3)等高等体积:S锥:S柱=3:1

题型总结:

高不变半径扩大缩小n倍,直径、底面周长、侧面积扩大缩小n倍,底面积、体积扩大缩小n2倍。

半径不变高扩大缩小n倍,侧面积、体积扩大缩小n倍

削成最大体积的问题:

正方体里削出最大的圆柱圆锥:圆柱圆锥的高和底面直径等于正方体棱长

长方体里削出最大的圆柱圆锥:圆柱圆锥底面直径等于宽(宽﹥高)圆柱圆锥高等于长方体高

浸水体积问题:水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度。

等体积转换问题:一圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3 。

标签:实用文总结

标签列表
热门文章