当前位置:找作文 >作文大全 > 正文

初中数学知识点总结

2022-03-30 17:52:53 7

初中数学知识点总结图片

总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,让我们一起认真地写一份总结吧。那么你真的懂得怎么写总结吗?以下是小编帮大家整理的初中数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

初中数学知识点总结1

1、正数和负数的有关概念

(1)正数:

比0大的数叫做正数;

负数:比0小的数叫做负数;

0既不是正数,也不是负数。

(2)正数和负数表示相反意义的量。

2、有理数的概念及分类

3、有关数轴

(1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。

(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

(2)相反数:符号不同、绝对值相等的两个数互为相反数。

若a、b互为相反数,则a+b=0;

相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

(3)绝对值最小的数是0;绝对值是本身的数是非负数。

4、任何数的绝对值是非负数。

最小的正整数是1,最大的负整数是-1。

5、利用绝对值比较大小

两个正数比较:绝对值大的那个数大;

两个负数比较:先算出它们的绝对值,绝对值大的反而小。

6、有理数加法

(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和。

(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零。

(3)一个数同零相加,仍得这个数。

加法的交换律:a+b=b+a

加法的结合律:(a+b)+c=a+(b+c)

7、有理数减法:

减去一个数,等于加上这个数的相反数。

8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写。

例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和。”

9、有理数的乘法

两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。

第一步:确定积的符号 第二步:绝对值相乘

10、乘积的符号的确定

几个有理数相乘,因数都不为 0 时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;

当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。

11、倒数:

乘积为1的两个数互为倒数,0没有倒数。

正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)

倒数是本身的只有1和-1。

初中数学知识点总结2

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:

①在同一平面

②两条数轴

③互相垂直

④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向。

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成。

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成。

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

初中数学知识点总结3

一、圆

1、圆的有关性质

在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

由圆的意义可知:

圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧。小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的`半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。

二、过三点的圆

1、过三点的圆

过三点的圆的作法:利用中垂线找圆心

定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法

反证法的三个步骤:

①假设命题的结论不成立。

②从这个假设出发,经过推理论证,得出矛盾。

③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角。

则两个钝角之和>180°

与三角形内角和等于180°矛盾。

不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系

圆是以圆心为对称中心的中心对称图形。

实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

五、圆周角

顶点在圆上,并且两边都和圆相交的角叫圆周角。

推理1:同弧或等弧所对的圆周角相等。同圆或等圆中,相等的圆周角所对的弧也相等。

推理2:半圆(或直径)所对的圆周角是直角。90°的圆周角所对的弦是直径。

推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。

初中数学知识点总结4

一、平移变换:

1、概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

2、性质:

(1)平移前后图形全等;

(2)对应点连线平行或在同一直线上且相等。

3、平移的作图步骤和方法:

(1)分清题目要求,确定平移的方向和平移的距离。

(2)分析所作的图形,找出构成图形的关健点。

(3)沿一定的方向,按一定的距离平移各个关健点。

(4)连接所作的各个关键点,并标上相应的字母。

(5)写出结论。

二、旋转变换:

1、概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

说明:

(1)图形的旋转是由旋转中心和旋转的角度所决定的;

(2)旋转过程中旋转中心始终保持不动。

(3)旋转过程中旋转的方向是相同的。

(4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。

2、性质:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等。

3、旋转作图的步骤和方法:

(1)确定旋转中心及旋转方向、旋转角;

(2)找出图形的关键点;

(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;

(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。

说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。

4、常见考法

(1)把平移旋转结合起来证明三角形全等;

(2)利用平移变换与旋转变换的性质,设计一些题目。

误区提醒

(1)弄反了坐标平移的上加下减,左减右加的规律;

(2)平移与旋转的性质没有掌握。

标签:实用文总结

标签列表
热门文章